TOTAL SYNTHESIS OF $(±)$ -APLYSIN-20¹⁾

Akio MURAI,* Atsushi ABIKO, and Tadashi MASAMUNE Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060, Japan

Summary: The first total synthesis of $(±)$ -aplysin-20 involving 16 steps from nerolidol in a 10% overall yield is described.

 $(-)$ -Aplysin-20 (1)²⁾ is the first brominated diterpene from marine organisms, which was isolated from Aplysia kurodai (sea hare) in 1967 by Hirata and Yamamura, and later from the red alga, $\frac{3}{3}$ a Laurencia species. The unique structure of this diterpene is characterized by the presence of an axial hydroxyl group at C-8 and an equatorial bromine atom at C-3 and by the absolute configuration which differs from that of most of terpenoids and sterols of terrestrial plant and animal origin. We report herein the first total synthesis of $(+)$ aplysin-20, which is based on our efficient cyclization of terminal bromohydrin of polyenes⁴⁾ as well as on our three carbon units elongation reaction.⁵⁾ This synthesis implies that the proposed structure should be revised for "isoconcinndiol" (2) isolated from the red alga, L. snyderae, by Howard and Fenical. 6)

Treatment of (3E,7E)-11-bromo-12-hydroxy-4,8,12-trimethy1-3,7-tridecadienonitrile (2), 7) prepared easily from nerolidol in three steps, with acetic trifluoroacetic anhydride⁸⁾ in dichloromethane (CH₂Cl₂) at room temperature for 4 h afforded the corresponding acetate ($2a$) ($\sqrt{100}$). Compound $3a$ was reacted with the boron trifluoride etherate complex under various conditions, giving a mixture of the cyclic compounds, from which four bicyclic olefins (\cancel{A}) \sim ($\cancel{7}$) were isolated by preparative HPLC, the results being summarized in Table $1.\overline{9}$ The nitrile $(\frac{A}{A})$, prepared under the conditions of run 4 or 7, was submitted to reduction (DIBAH) and subsequent Jones oxidation to afford the acid (\mathcal{B}) (94%). Treatment of the acid with hydroiodic acid in chloroform under reflux for 4 h gave Y-lactone (2) as a single product (87%). The isomeric nitrile (2) was

4955

CN

also converted into the same γ -lactone (9), via the corresponding acid (10), according to the same procedure (75% overall yield). The lactone (2) was then reduced (Bu₃SnH-AIBN, benzene, reflux) to afford the debromolactone (J_a/J), which was identified as the known compound.¹⁰⁾ This establishes the structure of bromolactone (9) (Scheme 1).

Introduction of four-carbon units as the side chain was commenced with reduction of β (LiAlH_A, ether-THF, 0 °C, 30 min) to give the diol (12) (~100%), which was converted into its monochloroacetate (12a) (~100%) (ClCH₂COC1 and Py in THF, O $^{\circ}$ C, 15 min)''' (Scheme 2). Compound 12a was transformed with acetic trifluoroacetic anhydride⁸⁾ under restricted conditions $[\texttt{CH}_{\texttt{3}}\texttt{CO}_{\texttt{2}}\texttt{H}$ and $(\texttt{CF}_{\texttt{3}}\texttt{CO})_{\texttt{2}}\texttt{O}$, CH₂C1₂, room temp., 1 h] into the acetoxy chloroacetate (12k) (~100% yield at

Scheme 1.

Scheme 2.

69% conversion). Compound 12b underwent selective hydrolysis (KHCO₃, aq MeOH) to regenerate the hydroxy acetate $(12c)$, which on Swern oxidation¹²⁾ gave aldehyde acetate (1,3) (93%). A new modification of Peterson reaction⁵⁾ was employed for the elongation. Treatment of the aldehyde $(1,3)$ with the titanium ate complex, prepared from 1-lithio-1-(I-ethoxyethoxy)allyltrimethylsilane and titanium(IV) isopropoxide, at -78 \sim 20 °C for 16 h effected formation of the expected vinyl ketone (14), after hydrolysis of the resulting dienyl ether (15), in a quantitative yield. Then compound 1.4 , when treated with methyllithium (ether, 0 °C, 15 min), produced a mixture of the diastereoisomeric allyl alcohols (16) ($\sqrt{100\%}$). Treatment of $\sqrt[3]{6}$ with pyridinium chlorochromate (PPC)¹³⁾ in CH₂Cl₂ 2 2 resulted in rearrangement with concomitant oxidation to give a 1:l mixture of the (E) - and (Z) - α , β -unsaturated aldehydes (17 E) and (17 Z) (96%), which was easily separated by preparative TLC.¹⁴⁾ Reduction of $\frac{1}{\sqrt{2}}$ (DIBAH) afforded a new diol (1) (98%), which was identified as (t)-aplysin-20 by direct comparison (MS, IR, 1_H MMR, TLC, and HPLC) with natural (-)-aplysin-20. This synthesis involves

16 steps from nerolidol in a 10% overall yield.

The synthesis of "isoconcinndiol" (2) was also performed without difficulty. Treatment of the vinyl ketone $(2,4)$ with excess of methyllithium (THF, room temp.) afforded a diol $(1, 8)$ ($\sqrt{100}$) as a 1:1 mixture of diastereoisomers at $C-13$, which was separated by preparative HPLC (μ -Porasil) to give each diol ($\frac{18a}{18a}$) and ($\frac{18b}{16}$) in pure state. However, the spectra (MS, IR, $\frac{1}{1}$ NMR, and TLC) of both the diols were not identical with those of the natural product by direct comparison. It follows that the proposed structure of "isoconcinndiol" should be revised.

Acknowledgement: We are grateful to Professor S. Yamamura and Doctor B. M. Howard for generously supplying samples of natural aplysin-20 and isoconcinndiol, respectively.

REFERENCES

- 1) Part VIII of "Synthetic Studies of Marine Natural Products;" Part VII, ref. 4b.
- 2) H. Matsuda, Y. Tomiie, S. Yamamura, and Y. Hirata, J. Chem. Soc., Chem. Commun., 898 (1967); S. Yamamura and Y. Hirata, Bull. Chem. Soc. Jpn., 44, 2560 (1971).
- 3) B. M. Howard and W. Fenical, 2. Org. Chem., \$2, 4401 (1978).
- 4) (a) A. Murai, A. Abiko, K. Kato, and T. Masamune, Chem. Lett., 1125 (1981); (b) A. Murai, K. Kato, and T. Masamune, Tetrahedron Lett., 23 , 2887 (1982).
- 5) A. Murai, A. Abiko, N. Shimada, and T. Masamune, the preceding paper.
- 6) B. M. Howard and W. Fenical, Phytochemistry, 3.8 , 2774 (1980).
- 7) T. Kato, S. Kumazawa, C. Kobuto, T. Honda, and Y. Kitahara, Tetrahedron Lett., 2319 (1975).
- 8) Cf., R. C. Parish and L. M. Stock, J, Org. Chem., 30, 927 (1965).
- 9) The structures of these compounds were assigned from the respective 1_H NMR spectral ground (the details will be discussed in a full paper).
- 10) M. Hinder and M. Stoll, \underline{Helv} . Chim. Acta, $\frac{36}{2}$, 1995 (1953); R. C. Cambie, K. N. Joblin, and A. F. Preston, Aust. J. Chem., 24 , 583 (1971).
- 11) C. H. Robinson, L. Finckenor, M. Kirtley, D. Gould, and E. P. Oliveto, J. Am. Chem. Soc., 81 , 2195 (1959).
- 12) A. J. Mancuso, S-L. Huang, and D. Swern, J. Org. Chem., 4λ , 2480 (1978).
- 13) E. J. Corey and J. W. Suggs, Tetrahedron Lett., 2647 (1975); W. G. Dauben and D. M. Michno, <u>J</u>. <u>Org</u>. <u>Chem</u>., 42, 682 (1977).
- 14) The configuration of each isomer was determined by the chemical shift of the corresponding olefinic methyl protons in the respective ¹H NMR spectra: (Z)-enal, 6 1.54; (E)-enal, 6 1.49.

(Received in Japan 2 July 1984)

4958